Ring-like structures of frequency domains of wavelets
نویسندگان
چکیده
منابع مشابه
Status of Ring-like Correlations and Wavelets
The problem of large-scale correlations of particles produced in high-energy collisions is discussed. Among them are, e.g., those correlations which lead to ring-like and elliptic flow shapes of individual high-multiplicity events in the polar+azimuthal angles plane. The wavelet method of analysis which allows to disentangle various patterns is proposed and applied to central Pb-Pb collisions a...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Semistar dimension of polynomial rings and Prufer-like domains
Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...
متن کاملEffect Algebras and Ring-like Structures
The dichotomic physical quantities, also called propositions, can be naturally associated to maps of the set of states into the real interval [0,1]. We show that the structure of effect algebra associated to such maps can be represented by quasiring structures, which are a generalization of Boolean rings, in such a way that the ring operation of addition can be non-associative and the ring mult...
متن کاملLocally GCD domains and the ring $D+XD_S[X]$
An integral domain $D$ is called a emph{locally GCD domain} if $D_{M}$ is aGCD domain for every maximal ideal $M$ of $D$. We study somering-theoretic properties of locally GCD domains. E.g., we show that $%D$ is a locally GCD domain if and only if $aDcap bD$ is locally principalfor all $0neq a,bin D$, and flat overrings of a locally GCD domain arelocally GCD. We also show that the t-class group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2010
ISSN: 1063-5203
DOI: 10.1016/j.acha.2009.08.003